
# Series HDD 601-1351 DN50 PN315





## **Dimensions:**

| type        | HDD 601  | HDD 901  | HDD 1351 |  |
|-------------|----------|----------|----------|--|
| connection  | 2"       |          |          |  |
| Α           | 557      | 707      | 955      |  |
| В           | 310      | 460      | 710      |  |
| weight kg   | 145      | 158      | 182      |  |
| volume tank | 2x 2,1 l | 2x 3,1 l | 2x 4,6 l |  |

1) Connection for the potential equalization, only for application in the explosive area.

Measure connections III and IV to be used for pressure relief and air bleeding respective filter side.

Position I: left filter side in operation Position II: right filter side in operation

Dimensions: mm

Designs and performance values are subject to change.



# Pressure Filter, change over Series HDD 601-1351 DN50 PN315

# **Description:**

Pressure filters changeover series HDD 601-1351 are suitable for operating pressure up to 315 bar. The pressure peaks are absorbed by a sufficient margin of safety.

Duplex filters can be maintained without interruption. The upper part has a three-way-change-over valve which allows to change-over the flow from the dirty filter-side to the clean filter-side without interrupting the operation. The change-over procedure does not lead to a reduction of area.

The change-over can be done easily by opening of the change-over valve.

The mini-measuring connections on each filter-side allow the measuring of the pressure drop through the filter element, as well as at the pressure discharge of the tube plug during the maintenance. Filter elements are available down to a filter fineness of 4  $\mu$ m(c).

For cleaning the stainless steel mesh element (see special leaflets 21070-4 and 39448-4) or changing the filter element, remove the tube plug and take out the element. The mesh elements are not guaranteed to maintain 100% performance after cleaning.

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements are available up to a pressure resistance of  $\Delta p$  160 bar and a rupture strength of  $\Delta p$  250 bar.

Eaton filter can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

## Type index:

Complete filter: (ordering example)

HDD. 901. 10VG. HR. E. P. -. FS. 8. -. -. AE
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

1 series:

HDD = pressure filter change over

2 | nominal size: 601, 901, 1351

3 filter material:

80G, 40G, 25G stainless stee wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass

4 filter element collapse rating:

30 =  $\Delta p \, 30 \, bar$ 

HR =  $\Delta p$  160 bar (rupture strength  $\Delta p$  250 bar)

5 filter element design:

E = single-end open

6 sealing material:

P = Nitrile (NBR) V = Viton (FPM)

7 | filter element specification:

- = standardVA = stainless steel

8 process connection:

FS = SAE-flange connection 6000 PSI (standard)
FV = AVIT-flange connection 320 bar (special design)

9 process connection size:

8 = 2

10 | filter housing specification:

= standard

11 internal valve:

- = without

S1 = with bypass valve  $\Delta p$  3,5 bar S2 = with bypass valve  $\Delta p$  7,0 bar R = reversing valve, Q  $\leq$  465,384 l/min

12 clogging indicator or clogging sensor:

- = without

AOR = visual, see sheet-no. 1606
AOC = visual, see sheet-no. 1606
AE = visual-electric, see sheet-no. 1615
VS5 = electronic, see sheet-no. 1619

To add an indicator/sensor to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

Filter element: (ordering example)

**01E. 900. 10VG. HR. E. P.** - 1 | 2 | 3 | 4 | 5 | 6 | 7

1 series:

01E = filter element according to company standard

2 **nominal size:** 600, 900, 1350

3 - 7 see type index-complete filter

#### **Accessories:**

- gauge port- and bleeder connections, see sheet-no. 1650
- SAE-counter flange, see sheet-no. 1652
- AVIT-counter flange, see sheet-no. 1654

#### **Technical data:**

operating temperature: -10 °C to +100 °C

operating medium: mineral oil, other media on request

max. operating pressure: 315 bar test pressure: 450 bar

process connection: SAE-flange 6000 PSI (standard) or AVIT-flange 320 bar (special design)

housing material: C-steel

sealing material: Nitrile (NBR) or Viton (FPM), other materials on request

installation position: vertical bleeder- and measuring connections: G ¼

Classified under the Pressure Equipment Directive 2014/68/EU for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EU according to specific application (see questionnaire sheet-no. 34279-4).

### Pressure drop flow curves:

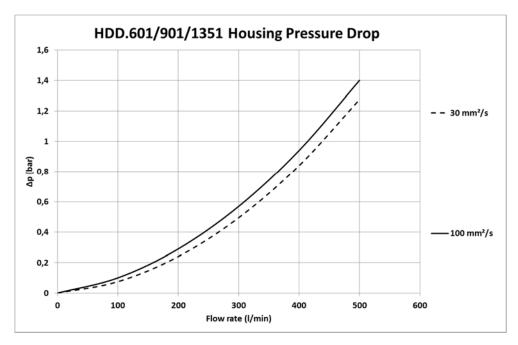
#### Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing  $\Delta p$  and the element  $\Delta p$  and is calculated as follows:

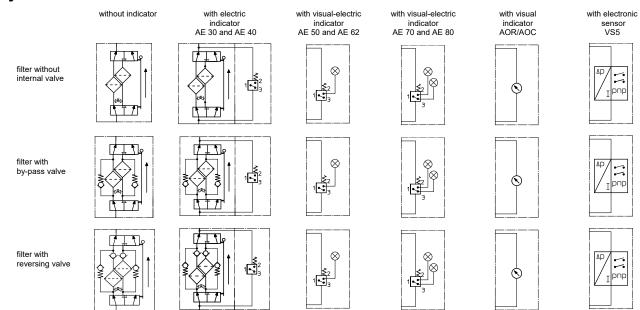
 $\Delta p$  assembly =  $\Delta p$  housing +  $\Delta p$  element  $\Delta p$  housing = (see  $\Delta p = f(Q)$  - characteristics)

$$\textit{Ap Element (mbar)} = Q \left( \frac{l}{min} \right) x \; \frac{\textit{MSK}}{10} \left( \frac{\textit{mbar}}{\textit{l/min}} \right) \; x \; \nu \left( \frac{mm^2}{\textit{s}} \right) \; x \; \frac{p}{0.876} \; \left( \frac{\textit{kg}}{\textit{dm}^3} \right)$$

For ease of calculation our Filter Selection tool is available online at <a href="https://www.eatonpowersource.com/calculators/filtration/">www.eatonpowersource.com/calculators/filtration/</a>


#### Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in mbar/(l/min) apply to mineral oil (HLP) with a density of 0,876 kg/dm³ and a kinematic viscosity of 30 mm²/s (139 SUS). The pressure drop changes proportionally to the change in kinematic viscosity and density.


| HDD  | VG    |       |       |       | G     |        |        |        |
|------|-------|-------|-------|-------|-------|--------|--------|--------|
|      | 3VG   | 6VG   | 10VG  | 16VG  | 25VG  | 25G    | 40G    | 80G    |
| 601  | 0,776 | 0,539 | 0,345 | 0,300 | 0,205 | 0,0247 | 0,0231 | 0,0158 |
| 901  | 0,538 | 0,374 | 0,239 | 0,208 | 0,142 | 0,0155 | 0,0144 | 0,0099 |
| 1351 | 0,336 | 0,233 | 0,149 | 0,130 | 0,089 | 0,0100 | 0,0093 | 0,0064 |

### $\Delta p = f(Q)$ – characteristics according to ISO 3968

The pressure drop characteristics apply to mineral oil (HLP) with a density of 0,876 kg/dm³. The pressure drop changes proportionally to the density.



# Symbols:



# Spare parts:

| item | qty. | designation                         | dimension      |         |                    | article-no.  |              |
|------|------|-------------------------------------|----------------|---------|--------------------|--------------|--------------|
|      |      |                                     | HDD 601        | HDD 901 | HDD 1351           |              |              |
| 1    | 2    | filte element                       | 01E.600        | 01E.900 | 01E.1350           |              |              |
| 2    | 2    | O-ring                              | 48 x 3         |         |                    | 304357 (NBR) | 304404 (FPM) |
| 3    | 2    | O-ring                              | 98 x 4         |         |                    | 301914 (NBR) | 304765 (FPM) |
| 4    | 2    | support ring                        | 110 x 3,5 x 2  |         |                    | 304802       |              |
| 5    | 2    | O-ring                              | 18 x 3         |         |                    | 304359 (NBR) | 304399 (FPM) |
| 6    | 2    | support ring                        | 25 x 2,5 x 0,5 |         |                    | 311311       |              |
| 7    | 2    | O-ring                              | 71 x 3         |         |                    | 306451 (NBR) | 306897(FPM)  |
| 8    | 2    | screw plug                          | G ½            |         | 304678             |              |              |
| 9    | 1    | clogging indicator, visual          | AOR or AOC     |         | see sheet-no. 1606 |              |              |
| 10   | 1    | clogging indicator, visual-electric | AE             |         | see sheet-no. 1615 |              |              |
| 11   | 1    | clogging sensor, electronic         | VS5            |         | see sheet-no. 1619 |              |              |
| 12   | 4    | screw plug                          | G 1/4          |         | 305003             |              |              |
| 13   | 8    | screw plug                          | G 1 ½          |         | 311475             |              |              |
| 14   | 1    | O-ring                              | 56,75 x 3,53   |         | 306035 (NBR)       | 310264(FPM)  |              |
| 15   | 1    | O-ring                              |                | 61 x 5  |                    |              |              |
| 16   | 1    | screw plug                          | 20913-4        |         |                    | 309817       |              |
| 17   | 1    | pressure balance valve              | DN10           |         |                    | 305000       |              |

item 16 execution only without clogging indicator or clogging sensor

#### Test methods: Filter elements are tested according to the following ISO standards:

| ISO 2941  | Verification of collapse/burst resistance               |
|-----------|---------------------------------------------------------|
| ISO 2942  | Verification of fabrication integrity                   |
| ISO 2943  | Verification of material compatibility with fluids      |
| ISO 3723  | Method for end load test                                |
| ISO 3724  | Verification of flow fatigue characteristics            |
| ISO 3968  | Evaluation of pressure drop versus flow characteristics |
| ISO 16889 | Multi-pass method for evaluating filtration performance |

North America 44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

#### Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

#### Singapore

100G Pasir Panjang Road #07-08 Singapore 118523 Tel: +65 6825-1668

Av Ermano Marchetti 1435 -Água Branca, São Paulo - SP, 05038-001, Brazil Tel: +55 11 3616-8461

#### For more information, please email us at filtration@eaton.com or visit www.eaton.com/filtration

© 2019 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

