

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Воздушно-масляные теплообменники

Модель LHC с гидравлическим двигателем для применения в мобильных и промышленных системах

Группа Olaer входит в состав Parker Hannifin с 1 июля 2012 года. Имея подразделения по производству и продажам в 14 странах Северной Америки, Азии и Европы и обладая уникальными знаниями и опытом в области производства гидравлических аккумуляторов и систем охлаждения, Olaer расширила географическое присутствие компании Parker на целевых растущих рынках, таких как нефтяная и газовая промышленность, производство электроэнергии и возобновляемая энергия.

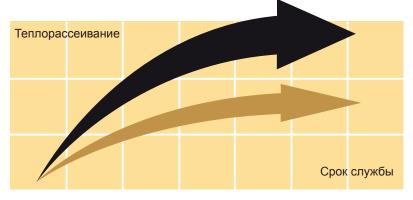
Воздушно-масляные теплообменники LHC

Для применения в мобильных и промышленных системах – максимальное теплорассеивание 300 кВт

Воздушно-масляные теплообменники LHC с гидравлическим двигателем оптимально приспособлены для применения в мобильном и промышленном секторе. Вместе с широким ассортиментом дополнительных принадлежностей маслоохладители LHC подходят для большинства областей применения и условий окружающей среды. Максимальное теплорассеивание составляет 300 кВт при разности температур на входе (ETD) 40 °C. Для правильного выбора теплообменника необходимо точно определить параметры системы. Наиболее надежный способ сделать это - использовать предлагаемую Parker программу расчета. Эта программа, а также поддержка со стороны опытных квалифицированных инженеров компании обеспечит повышение теплорассеивания вашей установки на единицу капиталовложений.

Перегрев - дорогостоящая проблема

Снижение мощности охлаждения ведет к увеличению теплового баланса. Следствием чего являются недостаточная смазывающая способность, внутренние утечки, повышенный риск кавитации, повреждение компонентов и т.д. С перегревом связаны такие проблемы как снижение рентабельности и отрицательное воздействие на окружающую среду.


Оптимизация теплового баланса – необходимое условие экономической эффективности Тепловой баланс в гидравлической системе достигается тогда, когда теплообменник обеспечивает рассеивание энергетических потерь. Это энергия, потерянная системой, ее величину можно рассчитать по формуле: (Рпотерян. = Рохлажд. = Р поступ. - Ризрасх.). Оптимизация теплового баланса означает, что температурное равновесие

достигается при идеальной рабочей температуре системы, под которой понимается температура, при которой вязкость масла и содержание воздуха соответствуют установленным требованиям.

Правильная рабочая температура позволяет:

- Увеличить срок эксплуатации гидравлической системы.
- Увеличить срок службы масла.
- Повысить коэффициент использования гидравлической системы, т.е. увеличить рабочее время и сократить количество простоев.
- Сократить затраты на обслуживание и ремонт.
- Поддерживать высокий к.п.д. в режиме непрерывной эксплуатации к.п.д. системы падает, если температура превышает уровень идеальной рабочей температуры.

Благодаря продуманной конструкции и правильному выбору материалов и компонентов увеличивается срок службы и коэффициент использования оборудования, и снижаются расходы на ремонт и техническое обслуживание.

Легкость технического обслуживания и модернизации во многих областях применения.

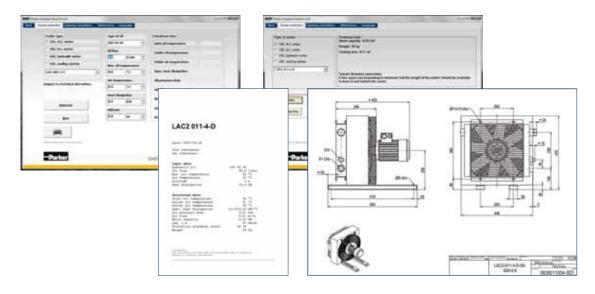
Компактность и малый вес.

Модели LHC-M и LHC-X

Предлагаются две специальные модификации воздушномасляных теплообменников LHC: LHC-X (версия ATEX),

разрешенная к применению во взрывоопасной среде над поверхностью земли, и LHC-M, оснащенная более совершенной

противокоррозионной защитой для использования, в том числе, в морских условиях.



Расчет требуемого теплорассеивания

Ввести характеристики...

...рекомендуемое решение

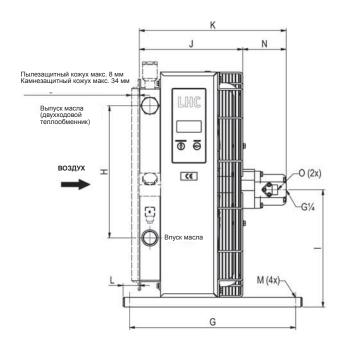
Экономное энергопотребление не только приводит к снижению отрицательного воздействия на окружающую среду, но также сокращает эксплуатационные расходы, т.е. дает возможность получать большее теплорассеивание на каждую единицу вложений.

Больше охлаждения на вложенные средства

благодаря точности расчетов и поддержке инженеров Parker

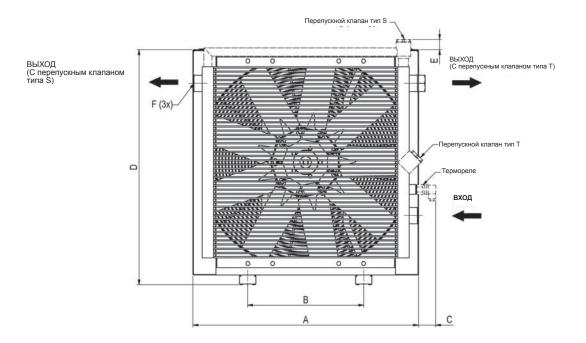
Эффективное охлаждение обеспечивается путем расчета оптимальных размеров установки. Для правильного расчета требуются соответствующие знания и опыт. Программа, разработанная специально для определения размера теплообменника, и поддержка со стороны технических специалистов компании Parker делают эти знания и опыт доступными для наших клиентов. Результатом будет повышение теплорассеивания на единицу вложенных средств. Простую в использовании программу расчета можно загрузить с сайта www.olaer.se

Оценка других возможностей системы без дополнительных затрат


При расчете теплорассеивания часто необходима более широкая оценка требований к гидравлической системе. В связи с этим клиенты могут обратиться к специалистам компании Parker для обсуждения других потенциальных возможностей усовершенствования системы, например, использования фильтрации, автономного и неавтономного охлаждения и т.д.

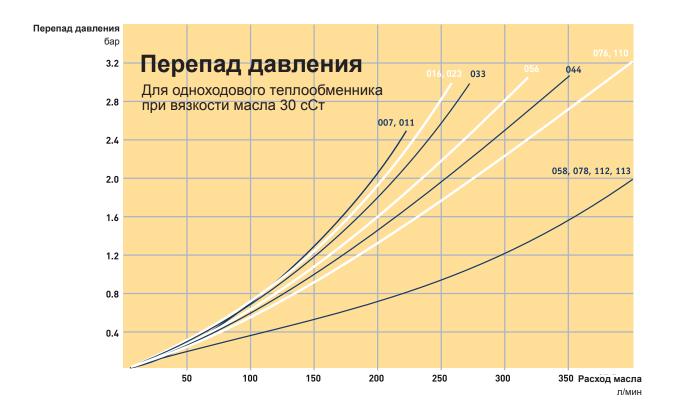
Качество и характеристики оборудования Parker Hannifin гарантируют эффективную и надежную работу предприятий и систем наших клиентов Постоянное стремление к созданию более экономичных и

экологически безопасных гидравлических систем требует непрерывного развития. В частности, особое внимание уделяется совершенствованию таких характеристик как теплорассеивание, уровень шума, перепад давления и сопротивление усталости. В лаборатории компании проводятся глубокие испытания с целью проверки качества и технических характеристик оборудования. Все испытания и измерения осуществляются на основе следующих стандартов: теплорассеивание - EN1048, уровень шума - ISO 3743, перепад давления - EN 1048, сопротивление усталости - ISO 10771-1.

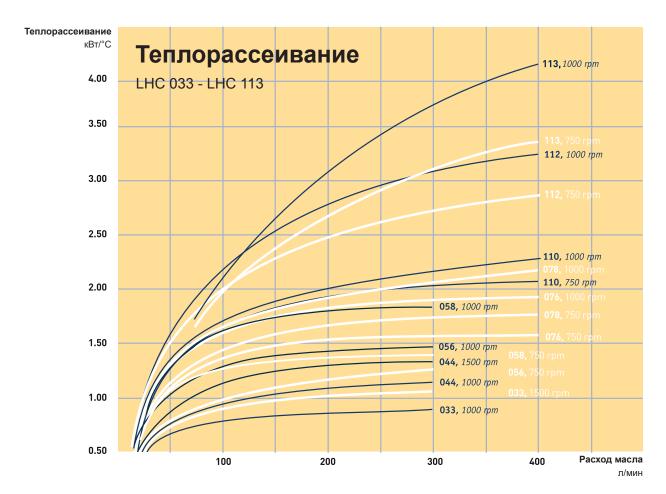


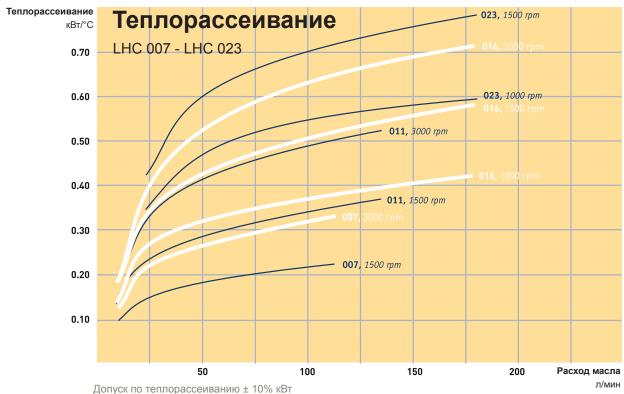
модель	Частота вращения вентилятора, об/мин	Мощность вентилятора, кВт	Масса, кг (прибл.)	Макс. частота вращения вен- тилятора при 40°C, об/мин	Уровень звукового давления LpA в дБ(A) на расстоянии 1м *	
LHC2 007	1500	0.10	10	3500	62	
	3000	0.65	10	3500	79	
LHC2 011	1500	0.20	15	3500	67	
	3000	1.50	15	3500	82	
LHC2 016	1000	0.10	18	3500	60	
	1500	0.35	18	3500	70	
	3000	2.50	18	3500	86	
LHC2 023	1000	0.15	30	3500	64	
	1500	0.50	30	3500	76	
LHC 033	1000	0.65	40	2900	75	
	1500	2.00	40	2900	85	
LHC 044	1000	0.70	56	2900	77	
	1500	2.00	56	2900	86	
LHC 056	750	0.75	70	2400	74	
	1000	1.80	70	2400	82	
LHC 058	750	0.75	77	2400	75	
	1000	1.80	77	2400	83	
LHC 076	750	0.70	105	2200	80	
	1000	1.60	105	2200	87	
LHC 078	750	0.70	111	2200	81	
	1000	1.60	111	2200	88	
LHC 110	750	1.70	117	1900	85	
	1000	4.00	117	1900	91	
LHC 112	750	1.70	125	1900	86	
	1000	4.00	125	1900	92	
LHC 113	750	1.70	184	2400	87	
	1000	4.00	184	2400	93	
LHC 200	За дополнительной информацией обращаться к специалистам компании Parker.					

^{* =} Допуск по звуковому давлению \pm 3 дБ(A).



МОДЕЛЬ	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	MØ
LHC2 007	365	203	64	395	42	G1	510	160	197	225	J+N	50	9
LHC2 011	440	203	62	470	41	G1	510	230	234	249	J+N	50	9
LHC2 016	496	203	66	526	46	G1	510	230	262	272	J+N	50	9
LHC2 023	580	356	44	610	44	G1	510	305	304	287	J+N	50	9
LHC 033	692	356	42	722	42	G1 1/4	510	406	360	318	J+N	50	9
LHC 044	692	356	59	866	59	G1 1/4	510	584	432	343	J+N	50	9
LHC 056	868	508	49	898	43	G1 1/4	510	584	448	368	J+N	50	9
LHC 058	868	508	49	898	43	G2	510	584	448	388	J+N	30	9
LHC 076	1022	518	41	1052	45	G1 1/2	610	821	525	393	J+N	70	14
LHC 078	1022	518	41	1052	45	G2	610	821	525	413	J+N	50	14
LHC 110	1185	600	54	1215	45	G2	610	985	607	418	J+N	70	14
LHC 112	1185	600	54	1215	45	G2	610	985	607	438	J+N	50	14
LHC 113	1200	600	82	1215	45	G2	610	985	607	485	J+N	132	14


ДВИГА- ТЕЛЬ	Рабочий объем см³/об	N LHC2 007 - LHC2 023	N LHC 033 - LHC 112	О Угловое соединение 90°	Макс. рабочее давление, бар
Α	8.4	91	133	G1/2	250
В	10.8	98	138	G1/2	250
С	14.4	101	144	G1/2	250
D	16.8	105	148	G3/4	250
E	19.2	110	151	G3/4	250
F	25.2	120	165	G3/4	250



Кодировка воздушно-масляных теплообменников мод. LHC/LHC2

При заказе оборудования должны заполняться все позиции.

ПРИМЕР:	LHC2 -	016 -	B -	50 -	S20 -	S-	Z
	1	2	3	4	5	6	7

1. ВОЗДУШНО-МАСЛЯНЫЙ ТЕПЛООБМЕННИК С ГИДРОМО-ТОРОМ = LHC/LHC2

2. ТИПОРАЗМЕР

007, 011, 016, 023, 033, 044, 056, 058, 076, 078, 110, 112 и 113.

3. ГИДРАВЛИЧЕСКИЙ ДВИГА-ТЕЛЬ, РАБОЧИЙ ОБЪЕМ

Без гидравлического	= O
двигателя	
Рабочий объем 8.4 см ³ /об	= A
Рабочий объем 10.8 см ³ /об	= B
Рабочий объем 14.4 см ³ /об	= C
Рабочий объем 16.8 см ³ /об	= D
Рабочий объем 19.2 см ³ /об	= E
Рабочий объем 25.2 см ³ /об	= F
Специальное исполнение	= X
(Х: следует указать соответствующи	е значе-

(X: следует указать соответствующие значения давления, рабочего объема и монтажные размеры)

4. ТЕРМОРЕЛЕ

Без термореле	= 00
40 °C	= 40
50 °C	= 50
60 °C	= 60
70 °C	= 70
80 °C	= 80
90 °C	= 90

5. ТЕПЛООБМЕНННАЯ МАТРИЦА

Стандартная	= 000
Двухходовая	= T00

Встроенный перепускной клапан с управлением по давлению, одноходовая матрица

2 бар	= S20
5 бар	= S50
8 бар	= S80

Встроенный перепускной клапан с управлением по давлению, двухходовая матрица*

2 бар	= T20
5 бар	= T50
8 бар	= T80

Встроенный перепускной клапан с управлением по температуре и давлению, одноходовая матрица

50 °C, 2.2 бар = S25

60 °С, 2.2 бар	= S26
70 °С, 2.2 бар	= S27
90 °С, 2.2 бар	= S29

Встроенный перепускной клапан с управлением по температуре и давлению, двухходовая матрица*

50 °С, 2.2 бар	= T25
60 °С, 2.2 бар	= T26
70 °С, 2.2 бар	= T27
90°C, 2.2 бар	= T29

6. ЗАЩИТНЫЙ КОЖУХ

Без защиты	= 0
Камнезащитный кожух	= S
Пылезащитный кожух	= D
Пыле- и камнезащит-	= P
ный кожух	

7. СТАНДАРТНОЕ/СПЕЦИАЛЬ-НОЕ ИСПОЛНЕНИЕ

Стандартное	= O
Специальное	= Z

ХАРАКТЕРИСТИКИ

ОХЛАЖДАЕМЫЕ ЖИДКОСТИ

	• • •
Минеральное масло	HL/HLP соглас- но DIN 51524
Водомасляная эмульсия	HFA, HFB со- гласно СЕТОР RP 77H
Водно-гликоле- вая смесь	HFC согласно CETOP RP 77H
Эфир фосфорной кислоты	HFD-R соглас- но CETOP RP 77H

МАТЕРИАЛ

обменника	АЛЮМИНИИ
Лопасти/ступи- ца вентилятора	Полипропилен, армированный стекловолокном/ алюминий
Корпус венти- лятора	Сталь
Решётка венти- лятора	Сталь
Прочие детали	Сталь
Покрытие поверхности	Порошковое покрытие с электростатическим осаждением

Матрина теппо - Апюминий

ТЕПЛООБМЕННАЯ МАТРИЦА

ТЕПЛООБМЕННАЯ МАТРИЦА		
Макс. статическое ра- бочее давление	21 бар	
Динамическое рабочее давление	14 бар*	
Предельное отклонение по теплоотдаче	±6%	
Макс. температура масла на входе	120 °C	
* Испытан согласно ISO/DIS 107	771-1	

КРИВАЯ ТЕПЛОРАССЕИВА-НИЯ

Кривые теплорассеивания, приводимые в этом техническом паспорте, основываются на результатах испытаний, проведенных по стандарту EN 1048 с использованием масла, соответствующего стандарту ISO VG 46, при температуре 60 °C.

ПРОКОНСУЛЬТИРУЙТЕСЬ СО СПЕЦИАЛИСТАМИ PARKER HANNIFIN ПО СЛЕДУЮЩИМ УСЛОВИЯМ ПРИМЕНЕНИЯ

Температура масла > 120 °C Вязкость масла > 100 сСт Воздействие агрессивной среды Наличие твердых частиц в воздухе

Применение на больших высотах

КРИВАЯ ХОЛОДОПРОИЗВО-ДИТЕЛЬНОСТИ

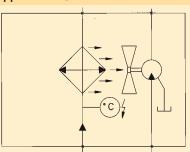


Схема соединения воздушномасляного теплообменника мод. LHC.

Информация, приведенная в настоящем документе, может быть изменена без предварительного уведомления.

Основываясь на своем техническом опыте, знании отрасли и передовых технологиях, компания Parker может предложить своим клиентам широкий спектр теплообменников и их принадлежностей.


Следующий шаг

- правильный выбор дополнительных принадлежностей

Включение в гидравлическую систему теплообменника с соответствующими принадлежностями и гидравлического аккумулятора повышает коэффициент использования, увеличивает срок службы и сокращает затраты на

ремонт и техническое обслуживание оборудования. Все области применения и условия эксплуатации являются уникальными. Правильный выбор дополнительных принадлежностей позволит еще в большей степени

усовершенствовать вашу гидравлическую систему. За дополнительной информацией следует обращаться в представительство компании Parker Hannifin.

Встроенный перепускной клапан с управлением по давлению

Осуществляет подачу масла в обход теплообменной матрицы при чрезмерно высоком перепаде давления. Снижает вероятность разрыва теплообменника вследствие, например, частых холодных запусков или временных повышений расхода или давления. Может использоваться на теплообменниках с одноходовой и двухходовой матрицей.

новленным значением для подачи предупредительных сигналов о температуре. Может использоваться для автоматического включения или выключения двигателя вентилятора с целью повышения экономической эффективности и уменьшения отрицательного воздействия на окружающую среду.

Встроенный перепускной клапан с управлением по температуре

Осуществляет подачу масла в обход теплообменной матрицы, если перепад давления превышает 2,2 бар или температура жидкости ниже выбранного значения. Перепускной клапан закрывается при повышении температуры масла. Можно задать различную температуру закрытия клапана. Используется на теплообменниках с одноходовой и двухходо-

вой матрицей.

Подъемные проушины

Предназначены для установки и перемещения агрегата.

Внешний трехходовой клапан с управлением по температуре

Выполняет ту же функцию, что и перепускной клапан с управлением по температуре, но устанавливается отдельно от теплообменника. Примечание: Заказывается отдельно.

Камнезащитные и пылезащитные кожухи

Служат для защиты оборудования при эксплуатации в тяжелых условиях.

Офисы продаж

Европа, Ближний Восток, Африка

AE - ОАЭ, Дубай Тел.: +971 4 8127100 parker.me@parker.com

АТ - Австрия, Винер-Нойштадт Тел.: +43 (0)2622 23501-0 parker.austria@parker.com

АТ – Восточная Европа, Винер Нойштадт

Тел.: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ-Азербайджан, Баку Тел.: +994 50 22 33 458 parker.azerbaijan@parker.com

BE/LU - Бельгия, Нивель Тел.: +32 (0)67 280 900 parker.belgium@parker.com

BY - Беларусь, Минск Тел.: +375 17 209 9399 parker.belarus@parker.com

СН - Швейцария, Этуа Тел.: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Чешская Республика, Клецани

Тел.: +420 284 083 111

parker.czechrepublic@parker.com

DE – Германия, Карст Тел.: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Дания, Баллеруп Тел.: +45 43 56 04 00 parker.denmark@parker.com

ES - Испания, Мадрид Тел.: +34 902 330 001 parker.spain@parker.com

FI - Финляндия, Вантаа Тел.: +358 (0)20 753 2500 parker.finland@parker.com

FR - Франция, Контамин-сюр-Арв Тел.: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Греция, Афины Тел.: +30 210 933 6450 parker.greece@parker.com

HU - Венгрия, Будаёрш Тел.: +36 23 885 470 parker.hungary@parker.com **IE - Ирландия**, Дублин Тел.: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Италия, Корсико (MI) Тел.: +39 02 45 19 21 parker.italy@parker.com

KZ - Казахстан, Алматы Тел.: +7 7273 561 000 parker.easteurope@parker.com

NL - Нидерланды, Олдензал Тел.: +31 (0)541 585 000 parker.nl@parker.com

NO - Норвегия, Аскер Тел.: +47 66 75 34 00 parker.norway@parker.com

PL – Польша, Варшава Тел.: +48 (0)22 573 24 00 parker.poland@parker.com

РТ - Португалия, Леса-да-Пальмейра

Тел.: +351 22 999 7360 parker.portugal@parker.com

RO - Румыния, Бухарест Тел.: +40 21 252 1382 parker.romania@parker.com

RU - Россия, Москва Тел.: +7 495 645-2156 parker.russia@parker.com

SE - Швеция, Спанга Тел.: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Словакия, Банска Быстрица Тел.: +421 484 162 252 parker.slovakia@parker.com

SL - Словения, Ново Место Тел.: +386 7 337 6650 parker.slovenia@parker.com

TR - Турция, Стамбул Тел.: +90 216 4997081 parker.turkey@parker.com

UA- Украина, Киев Тел. +380 44 494 2731 parker.ukraine@parker.com

UK - Великобритания, Уорик Тел.: +44 (0)1926 317 878 parker.uk@parker.com

ZA – Южная Африка, Кемптон-Парк

Тел.: +27 (0)11 961 0700 parker.southafrica@parker.com

Северная Америка

СА-Канада, Милтон, Онтарио

Тел.: +1 905 693 3000

US-США, Кливленд (промышленные системы) Тел.: +1 216 896 3000

US-США, Элк-Гров-Виллидж (мобильные системы) Тел.: +1 847 258 6200

Азиатско-Тихоокеанский регион

AU-Австралия, Касл-Хилл Тел.: +61 (0)2-9634 7777

CN - Китай, Шанхай Тел.: +86 21 2899 5000

НК- Гонконг

Тел.: +852 2428 8008

IN - Индия, Мумбай Тел.: +91 22 6513 7081-85

ЈР - Япония, Фудзисава Тел.: +81 (0)4 6635 3050

KR – Южная Корея, Сеул Тел.: +82 2 559 0400

МҮ - Малайзия. Шах-Алам

Тел.: +60 3 7849 0800

NZ – Новая Зеландия, Маунт

Веллингтон Тел.: +64 9 574 1744

SG - Сингапур

Тел.: +65 6887 6300 **ТН - Тайланд**, Бангкок

Тел.: +662 717 8140 **ТW - Тайвань**, Тайбэй Тел.: +886 2 2298 8987

Южная Америка

AR – Аргентина, Буэнос-Айрес Тел.: +54 3327 44 4129

BR - Бразилия, Кашуэйринья RS

Тел.: +55 51 3470 9144

CL - Чили. Сантьяго Тел.: +56 2 623 1216

МХ - Мексика, Аподака Тел.: +52 81 8156 6000

© 2012 Parker Hannifin Corporation. Все права защищены

Каталог HY10-6004/UK, POD, 10/2012, Vitt

Центр информации о продукции, регион ЕМЕА Бесплатный телефон: 00 800 27 27 5374

(При звонке из стран AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Центр информации о продукции, США Бесплатный телефон: 1-800-27 27 537

www.parker.com